Добавить в закладки
Текущий рейтинг статьи:
Статьи

Тепловые трубы: особенности устройства

Тепловые трубы представляют собой теплопередающие устройства, главной особенностью которых является способность передавать большие тепловые мощности при малых перепадах (градиентах) температуры. Устройства такого типа широко используются в теплоэнергетике, химической промышленности, электронике, а также в других областях промышленности.

В данном материале мы постараемся максимально доступно осветить принцип действия тепловых труб, а также рассказать о сфере их применения.

тепловые трубы

Стеклянный корпус тепловой трубы

Конструкция и функции тепловых труб

Термосифон как предшественник тепловой трубы

Устройством, которое являлось своеобразным «предшественником» тепловых труб современного типа является так называемый термосифон. Его конструкция, хоть и имеет значительные отличия от конструкции тепловых труб, все же базируется на тех же принципах.

трубы тепловые

Схема термосифона

Термосифон представляет собой специальную трубчатую емкость, внутрь которой вводится небольшое количество жидкости, после чего из емкости откачивается воздух и она герметизируется путем запайки.

Принцип работы термосифона следующий:

  • Тепло подводится к зоне испарения
  • Жидкость внутри капсулы термосифона превращается в пар, который под давлением движется в зону конденсации.
  • В зоне конденсации пар оседает на стенках, отдавая им тепло – следовательно, одним из условий, обеспечивающих работу термосифона, является эффективное отведение тепла от зоны конденсации пара.
    В противном случае возможен так называемый «кризис кипения», при котором вся жидкость испаряется и теплопередача проходит по стенкам термосифона, минуя зону конденсации.

Применение термосифонов обеспечивает значительную мощность теплопередачи даже  том случае, если разница температур между концами термосифона незначительна.

Обратите внимание!

Термосифон работает только тогда, когда его зона конденсации находится выше зоны испарения – только в этом случае возможно возвращение конденсата в зону испарения под действием силы тяжести.

Такая ситуация в ряде случаев является достаточно серьезны ограничением, поэтому на смену термосифонам пришли более сложные устройства — тепловые трубы.

Конструкция тепловой трубы

Наиболее распространенным типом тепловой трубы является тепловая труба Гровера (названная так по имени изобретателя).

Ее конструкция достаточно проста (насколько это возможно применительно к конструкции теплопередающего устройства) и включает в себя три основных элемента:

  • Корпус
  • Рабочую жидкость
  • Фитиль (капиллярно-пористый материал или КПМ)
тепловая труба

Конструкция тепловой трубы

Ниже мы рассмотрим особенности конструкции каждого из этих элементов.

Корпус тепловой трубы чаще всего представляет собой камеру круглого или прямоугольного сечения. Для изготовления корпуса применяют нержавеющую сталь, сплавы алюминия, бронзу, медь, стекло, полимерные материалы либо керамику.

Главные функции корпуса – изоляция рабочей жидкости, а также — эффективное подведение и отведение тепла от нее. Для этого корпус должен быть герметичным и выдерживать значительное внутреннее давление.

Тепловые трубы производят с корпусами разных размеров, при этом ограничение в габаритах корпуса есть только «снижу» — они должны быть достаточными, чтобы исключить воздействие капиллярных сил в зоне движения пара.

Чтобы подобная ситуация не возникала, расчёт тепловой трубы, а также ее изготовление должны проводиться исключительно специалистами.

Рабочая жидкость в тепловой трубе является главным носителем тепла, который, собственно, и обеспечивает функционирование всей системы.

Исходя из этого к рабочей жидкости выдвигается ряд требований:

  • Она должна иметь точку перехода «жидкость-пар» в том диапазоне температур, в котором работает труба тепловая.
  • Рабочая жидкость не должна быть подвержена температурному разложению.
  • Она должна смачивать материал фитиля и корпуса тепловой трубы.

В качестве рабочих жидкостей в тепловых трубах применяют различные вещества в жидкой фазе: сжиженные гелий и аммиак, ацетон, воду, ртуть, а также – натрий или серебро.

Фитиль из пористого материала обеспечивает перемещение жидкости из зоны конденсации в зону испарения под действием капиллярных сил. Материал для фитиля должен обеспечивать равномерное движение жидкости по капиллярным порам.

В качестве фитиля используются металлические войлоки, металлические стеки или ткани саржевого типа плетения. Оптимальные материалы для фитиля тепловых труб – титан, медь, никель, нержавеющая сталь.

Отдельную категорию тепловых труб составляют так называемые контурные тепловые трубы. В отличие от классической схемы конструкции тепловой трубы у тепловой трубы контурного типа отсутствует фитиль,  а передача рабочей жидкости от зоны испарения к зоне конденсации производится по контурным трубкам.

Схему контурной тепловой трубы вы можете видеть на рисунке.

контурные тепловые трубы

Контурная схема тепловой трубы

Функции тепловых труб

Главной полезной функцией, которой обладают практически все трубы тепловые, является эффективная теплопередача по оси трубы между двумя зонами с разной температурой. Оптимальная работа тепловой трубы предусматривает, что режимы работы элементов не достигают критического порога.

Подача тепла к тепловой трубе может осуществляться любым удобным для вас способом:

  • Открытым пламенем
  • Электрическим током
  • Контактом с нагретым телом
  • Инфракрасным излучением

При этом единственной величиной, которой лимитируется тепловая мощность трубы, является тепловая стойкость корпуса.

Применение современных тепловых труб

Область применения тепловых труб сегодня достаточно широка.

Они могут использоваться в таких направлениях как:

  • Обустройство каналов эффективной теплопередачи
  • Разделение в пространстве источника нагрева и точки, в которую теплота передается (так называемый сток теплоты)
  • Комплектация термостатов и устройств, аналогичных по назначению
  • Терморегуляция и перенаправление тепловых потоков
труба тепловая

Применение тепловых труб в энергетике

Кроме того, тепловые трубы являются обязательной деталью тепловых диодов и выключателей.

Характеристики тепловых труб на современном этапе достаточно впечатляющи:

  • Диапазон температур для работы тепловой трубы – от 4 до 2300 К.
  • Мощность теплопередачи – до 20 кВт на 1 см2
  • Ресурс работы тепловой трубы составляет более 20 тыс. часов.

Трубы в тепловых сетях

Общие сведения о трубах

Однако под тепловыми трубами зачастую понимают не только устройства для теплопередачи, но и трубы, которые используются в тепловых системах. Ниже мы расскажем о разновидностях этих труб, а также – об особенностях их применения.

Трубы для тепловых сетей могут быть изготовлены из самых разных материалов.

К наиболее распространенным тепловым трубам относятся:

  • Напорные трубы из асбестоцемента
  • Биметаллические трубы
  • Оцинкованные трубы из углеродистой стали
  • Трубы из углеродистой стали с эмалевым или стеклокерамическим покрытием.

Обратите внимание!

От используемого материала зависят не только потери тепла трубами при транспортировке теплоносителя, но и долговечность самой отопительной системы.

Вот почему к выбору материала для труб теплосети нужно подходить крайне ответственно.

Ниже мы рассмотрим все вышеперечисленные разновидности труб, и проанализируем их достоинства и недостатки.

Напорные трубы из асбестоцемента

Достаточно популярные сегодня отопительные трубы из асбестоцемента обладают рядом преимуществ, которые позволяют им «выигрывать» у труб из других материалов.

трубы для теплотрассы

Напорная труба из асбестоцемента

Среди преимуществ асбестоцементных тепловых труб:

  • Выдерживают температуру теплоносителя (чаще всего горячей воды) до 120 – 1300 С
  • Устойчивы к коррозии под воздействием почвенных растворов или других факторов
  • Асбест, входящий в состав таких труб, играет роль внутренней армировки, потому трубы из асбестоцементой смеси хорошо выдерживают сдавливающие деформации
  • Теплопроводность труб из асбестоцемента при температуре теплоносителя в 120 градусов меньше, чем теплопроводность аналогичной стальной трубы в аналогичных условиях  в 62,5 раза.
    Потому можно смело заявлять, что по отношению к асбестоцементу такое определение как теплые трубы – отнюдь не гипербола.

Кроме того, асбестоцементовые трубы достаточно просты в монтаже и неприхотливы в обслуживании. Также они мало склонны к промерзанию даже в случае, если теплоноситель в них не циркулирует, потому теплый кабель для труб в данном случае практически никогда не требуется.

Тепловые биметаллические трубы

Трубы отопительные биметаллические производятся из высококачественной листовой стали, а поверхность таких труб покрывается защитным спецсоставом.  Толщина защитного покрытия составляет от 5 до 20% от толщины стенки трубы.

Главной особенностью таких труб является тот факт, что они производятся горячекатаным методом – при этом  не возникает необходимости термического воздействия на трубу, что положительно сказывается на ее антикоррозионных свойствах.

теплый кабель для труб

Оребренные биметаллические трубы

Биметаллические трубы для отопительных систем достаточно эффективны с точки зрения минимизации финансовых затрат, так как их срок службы гораздо больше, чем срок службы стальных труб.

И все же биметаллические трубы для теплотрассы используются достаточно редко ввиду их высокой стоимости.

Оцинкованные стальные трубы

При работе с теплоносителем, температура которого не выше 60-70 градусов Цельсия хорошую эффективность также демонстрируют трубы из высокоуглеродистой стали с цинковыми добавками.

Однако цинковое покрытие не универсально – при работе с теплоносителем, pH которого находится в пределах 6-7, оцинкованные трубы стремительно разрушаются. Также на устойчивость покрытия влияет скорость движения теплоносителя и уровень теплоносителя в трубе.

отопительные трубы

Труба в оцинкованной оболочке

Наравне с цинком для продления срока службы тепловых труб используют также легирующие добавки. В качестве таких добавок эффективны никель или алюминий. К другим процедурам, способным существенно повысить коррозионную устойчивость труб, относятся пассивирование, лакировка и фосфатирование внутренних поверхностей.

Что же касается экономичности использования таких труб, то она достаточно невысока. Объясняется это тем, что значительный коэффициент теплопередачи трубы из стали является причиной быстрого остывания теплоносителя.

Стальные трубы с эмалевым покрытием

Еще одна разновидность тепловых труб — стальные углеродистые трубы с эмалевыми покрытиями (также есть модификации со стеклоэмалевым покрытием).

Такие трубы отличаются следующими преимуществами:

  • Гладкая, твердая и долговечная внутренняя поверхность трубы
  • Высокая коррозионная устойчивость к воздействию теплоносителей различного состава
  • Высокая термостойкость
  • Длительный срок службы покрытия, а следовательно – и самих труб

Еще одним преимуществом труб с эмалевым покрытием является их относительно невысокая стоимость.

Как видите, под термином тепловые трубы могут скрываться кА достаточно сложные теплотехнические агрегаты, так и достаточно простые трубные конструкции для отопительных систем. И все же информация об этих устройствах должна быть у всех, кто планирует заниматься созданием отопительных систем.

Понравилась статья? Подписывайтесь на наш канал Яндекс.Дзен

Оставить комментарий

ОБЯЗАТЕЛЬНО приложите ФОТО проблемы - так ответ эксперта будет гораздо точней

Оставляя комментарий, Вы принимаете пользовательское соглашение

Ваш псевдоним:



Добавить в избранное Версия для печати
Поделитесь:
Автор:
Опубликовано: 02.06.2013



Adblock
detector